
Semi-Streaming Algorithms for Weighted k-Disjoint Matchings∗

S M Ferdous† Bhargav Samineni‡ Alex Pothen§ Mahantesh Halappanavar¶

Bala Krishnamoorthy‖

July 9, 2024

Abstract
We design and implement two single-pass semi-streaming algorithms for the maximum weight k-disjoint

matching (k-DM) problem. Given an integer k, the k-DM problem is to find k pairwise edge-disjoint
matchings such that the sum of the weights of the matchings is maximized. For k ≥ 2, this problem is
NP-hard. Our first algorithm is based on the primal-dual framework of a linear programming relaxation of
the problem and is 1

3+ε
-approximate. We also develop an approximation preserving reduction from k-DM

to the maximum weight b-matching problem. Leveraging this reduction and an existing semi-streaming
b-matching algorithm, we design a (1

2+ε
)(1 − 1

k+1)-approximate semi-streaming algorithm for k-DM. For
any constant ε > 0, both of these algorithms require O(nk log2

1+ε n) bits of space. To the best of our
knowledge, this is the first study of semi-streaming algorithms for the k-DM problem.

We compare our two algorithms to state-of-the-art offline algorithms on 95 real-world and synthetic
test problems, including thirteen graphs generated from data center network traces. On these instances,
our streaming algorithms used significantly less memory (ranging from 6× to 512× less) and were faster
in runtime than the offline algorithms. Our solutions were often within 5% of the best weights from the
offline algorithms. We highlight that the existing offline algorithms run out of 1 TB of memory for most
of the large instances (> 1 billion edges), whereas our streaming algorithms can solve these problems
using only 100 GB memory for k = 8.

1 Introduction
Given an undirected graph G = (V, E, w) with weights w : E → R>0 and an integer k ≥ 1, the k-Disjoint
Matching (k-DM) problem asks for a collection of k pairwise edge-disjoint matchings that maximize the sum
of the weights of matched edges. The k-DM problem is a generalization of the classical Maximum Weight
Matching (MWM) problem and is closely related to the Maximum Weight b-Matching (MWbM) problem.
However, in contrast to these problems, k-DM is NP-hard and APX-hard already for k ≥ 2 [14, 22]. Prior
work has primarily studied k-DM in computational models where space complexity is not a limiting factor in
designing algorithms. In this work, we study k-DM in the single-pass semi-streaming model [15, 36], which is
used to solve massive graph problems with limited memory. In particular, we extend existing state-of-the-art
semi-streaming matching [37, 19] and b-matching [25] algorithms to the k-DM problem. To the best of our
knowledge, these are the first semi-streaming algorithms for the k-DM problem.

In the offline unweighted setting, k-DM in general graphs was originally studied by Feige et al. [14],
who motivated the problem by applications in scheduling traffic in satellite-based communication networks.

∗Source code: https://github.com/smferdous1/GraST
†Pacific Northwest National Laboratory. Email: sm.ferdous@pnnl.gov. Supported by the Laboratory Directed Research and

Development Program at PNNL.
‡The University of Texas at Austin. Email: sbharg@utexas.edu. Supported by the U.S. DOE Science Undergraduate Laboratory

Internships (SULI) program.
§Purdue University. Email: apothen@purdue.edu. Supported by U.S. Department of Energy SC-0022260.
¶Pacific Northwest National Laboratory. Email: mahantesh.halappanavar@pnnl.gov. Supported by U.S. Department of Energy

17-SC-20-SC (ECP ExaGraph) at PNNL.
‖Washington State University Vancouver. Email: kbala@wsu.edu.

1

ar
X

iv
:2

31
1.

02
07

3v
2

 [
cs

.D
S]

 6
 J

ul
 2

02
4

https://github.com/smferdous1/GraST

Cockayne et al. [7] modeled the problem of finding a maximal assignment of jobs to people such that no
person performs the same job on two consecutive days using unweighted k-DM in bipartite graphs with k = 2.

In the weighted setting, k-DM was recently studied by Hanauer et al. [22, 20] in the offline and dynamic
computation models. This was motivated by applications in designing reconfigurable optical topologies for
data center networks [3, 4, 5, 34]. In contrast to static networks, reconfigurable networks use optical switches
to quickly provide direct connectivity between racks, where each switch essentially acts as a reconfigurable
optical matching. Given a traffic matrix and k optical switches, the underlying optimization problem becomes
how to compute heavy disjoint matchings that carry a large amount of traffic for each switch, which is exactly
the k-DM problem.

Algorithmic Contributions We provide a primal-dual linear programming (LP) formulation of the
k-DM problem and use it to derive a 1

3+ε -approximate single-pass semi-streaming algorithm that requires
O(nk log2 n) bits of space for any constant ε > 0. Our algorithm extends the seminal MWM semi-streaming
algorithm by Paz and Schwartzman [37] by maintaining k stacks and employing approximate dual variables to
decide which edges should be stored in those stacks. The post-processing phase that computes k edge-disjoint
matchings from the stacks is more involved here since edges in a stack that are not included in a matching
need to be considered for inclusion in higher-numbered stacks. The primal-dual analysis of the approximation
ratio involves two sets of dual variables here, unlike the former algorithm.

We also reduce the k-DM problem to the MWbM problem. In particular, we show that a modified edge
coloring algorithm on any α-approximate b-matching subgraph (with b(v) = k for all v ∈ V) computes an
α(1− 1

k+1)-approximate solution for k-DM. Using the 1
2+ε -approximate semi-streaming MWbM algorithm

of Huang and Sellier [25], we obtain a (1
2+ε)(1− 1

k+1)-approximate k-DM that requires O(nk log2 n) bits of
space for any constant ε > 0. This reduction, which was previously known for unweighted k-DM [14], is
not specific to the semi-streaming setting, and thus could be used to develop algorithms for k-DM in other
computational models where b-matching results are known.

Experimental Validation We implement both algorithms and compare the memory used, running time
required, and the weight computed with static offline approximation algorithms for this problem on several
real-world and synthetic graphs, and several graphs generated from data center network traces. Our results
show that the streaming algorithms reduce the memory needed to compute the matchings often by two orders
of magnitude and are also faster than offline static algorithms. Indeed, the latter algorithms do not terminate
on all but one of the larger graphs in our test set. The median weights computed by the streaming algorithms
are only about 5% lower than the ones obtained by the static algorithms. Among the streaming algorithms,
the primal-dual algorithm outperforms the b-matching-based algorithm in memory needed and weight, and
also time (except for the data center problems).

2 Preliminaries
Notation Consider a graph G = (V, E, w) with weights w : E → R>0. We denote n := |V | and m := |E|
throughout the paper. For an edge e = (u, v), we say that vertices u and v are incident on the edge e. Given
a vertex v ∈ V , we denote by δ(v) the set of edges v is incident on, and by deg(v) := |δ(v)| its degree. The
maximum degree of G is ∆ := maxv∈V deg(v). We say that two edges e1 and e2 are adjacent if they share
a common vertex. For an edge subset H ⊆ E, we let V (H) denote the set of vertices incident on edges in
H, and let G[H] denote the subgraph induced by H (i.e., the subgraph whose edge set is H and vertex set
is V (H)). Likewise, we denote by degH(v) := |δ(v) ∩H| the number of edges in H that a vertex v ∈ V is
incident on and let ∆H := maxv∈V degH(v). For a positive integer t, we use [t] to represent the set of integers
from 1 to t, inclusive. For an integer s ≤ t, we let [s..t] denote the set of integers from s to t, inclusive.

Matchings and b-Matchings Given a function b : V → Z+, a b-matching in a graph G is an edge subset
F ⊆ E such that |F ∩ δ(v)| ≤ b(v) for all v ∈ V . The weight of a b-matching F is w(F) :=

∑
e∈F w(e), and in

the Maximum Weight b-Matching (MWbM) problem, we aim to maximize w(F). When b(v) = 1 for all v ∈ V ,
we obtain a matching and the MWbM problem reduces to the Maximum Weight Matching (MWM) problem.

2

(P) max
∑
c∈[k]

∑
e∈E

w(e)x(c, e)

s.t.
∑

e∈δ(v)

x(c, e) ≤ 1 ∀v ∈ V, c ∈ [k]

∑
c∈[k]

x(c, e) ≤ 1 ∀e ∈ E

x(c, e) ≥ 0 ∀e ∈ E, c ∈ [k]

(D) min
∑
c∈[k]

∑
v∈V

y(c, v) +
∑
e∈E

z(e)

s.t. y(c, u) + y(c, v) + z(e) ≥ w(e) ∀e = (u, v) ∈ E, c ∈ [k]
y(c, v) ≥ 0 ∀v ∈ V, c ∈ [k]
z(e) ≥ 0 ∀e ∈ E

Figure 1: LP Relaxation (P) of k-DM and its dual (D).

k-Disjoint Matchings Given an integer k ≥ 1, a k-disjoint matching in G is a collection of k matchings
M = {M1, . . . , Mk} that are pairwise edge-disjoint (i.e., Mi ∩Mj = ∅ for all i, j ∈ [k], i ̸= j). Its weight
is given by w(M) :=

∑k
i=1 w(Mi) and in the k-Disjoint Matching (k-DM) problem, we aim to maximize

w(M). A k-disjoint matching can also be described through an edge coloring viewpoint [22]. Consider a
coloring function C : E → [k] ∪ {⊥} that assigns edges a color from the palette [k], or leaves them uncolored
(color ⊥). If C describes a proper k edge coloring (i.e., any two adjacent edges e1, e2 colored from [k] satisfy
C(e1) ̸= C(e2)) then it also describes a k-disjoint matching. Prior work has shown that k-DM is NP-hard and
APX-hard for k ≥ 2 [14, 22].

An LP relaxation of the k-DM problem and its dual is shown in (P) and (D), respectively. For each edge
e = (u, v) ∈ E and color c ∈ [k], we associate each primal variable x(c, e) with the inclusion of edge e in the
cth matching, i.e., x(c, e) = 1 iff e ∈ Mc. The first constraint in (P) enforces that Mc is a valid matching
for each c ∈ [k], while the second constraint ensures each edge e ∈ E belongs to at most one matching. For
the dual (D), we define variables y(c, v) for each color c ∈ [k] and vertex v ∈ V (corresponding to the first
constraint in (P)), and z(e) for each edge e ∈ E (corresponding to the second constraint in (P)).

Semi-Streaming Model For semi-streaming k-DM, in each pass, the edges of E are presented one at
a time in an arbitrary order. We aim to compute a k-disjoint matching in G at the end of the algorithm,
using limited memory and only a single pass. The semi-streaming model allows memory size for processing
proportional (up to polylog factors) to the size of the memory needed to store the output. For k-DM, the
final solution size is O(nk), and hence the memory limit is O(nk · polylog(n)) =: Õ(nk) bits of space. We
assume that the ratio W = wmax/wmin is poly(n), where wmax = maxe∈E {w(e)} and wmin = mine∈E {w(e)}.
This allows for storing edge weights and their sums in O(log n) bits.

3 Related Work
In this section we discuss relevant related work to semi-streaming k-DM, including offline approximation
algorithms for k-DM and results for matching problems in the semi-streaming model. For discussions on
practical applications of k-DM, including a more in depth explanation of its relevance to reconfigurable
datacenter networks, as well as practical offline approximation algorithms for the MWM and MWbM problems,
we refer to Appendix A.

Offline Approximation Algorithms In the offline setting, Hanauer et al. [22] designed six approximation
algorithms for k-DM. Three of these algorithms are based on an iterative matching framework where k
matchings are successively computed by running a matching algorithm and removing the matched edges
from the graph. This framework was used with the Blossom [10] algorithm, which computes an exact MWM
solutions, and the Greedy and Global Path [32] algorithms, which compute 1

2 -approximate MWM solutions.
They also designed a b-matching-based algorithm, where a Greedy (k − 1)-matching is first found and then
converted in a k-disjoint matching using the Misra-Gries edge coloring algorithm [35]. Additionally, two
direct algorithms, NodeCentered and k-Edge Coloring, which do not use matching algorithms as a subroutine
were also proposed. The NodeCentered algorithm assigns ratings to vertices, which are then processed in
rating-decreasing order, and up to k edges a vertex is incident on are colored with any available color in

3

weight-decreasing order. A threshold θ ∈ [0, 1] is also introduced, which avoids an overly Greedy approach by
deferring the coloring of edges with weight less than θwmax. The k-Edge Coloring algorithm is an adaption of
the Misra-Gries (∆ + 1) edge coloring algorithm [35] that is restricted to using k colors and accounts for edge
weights. The iterative GPA, b-matching based, NodeCentered, and k-Edge Coloring algorithms are shown to
be at most 1

2 -approximate, while the Blossom variant is shown to be at most 7
9 -approximate and the Greedy

variant is 1
2 -approximate.

Matchings in the Semi-Streaming Model Matching problems are an active area of research in the
semi-streaming model. For MWM in the single pass, arbitrary order stream setting, Feigenbaum et al. [15]
first gave a 1

6 -approximation algorithm. This was improved on by a series of papers [8, 12, 33, 41], until the
current state-of-the-art result by Paz and Schwartzman [37] who showed that a simple local-ratio algorithm
achieves a 1

2+ε -approximation. Ghaffari and Wajc [19] further simplified the analysis of this algorithm by
giving both a primal-dual and charging-based analysis. This algorithm was implemented recently by Ferdous
et al. [16] and it was shown to reduce memory requirements by one to two orders of magnitude over offline
1
2 -approximate algorithms, while being close to the best of them in run time and matching weight. On the
hardness front, Kapralov [28] showed that no single-pass semi-streaming algorithm can have an approximation
ratio better than 1

1+ln 2 ≈ 0.59 in arbitrary order streams. In random order streams, Gamlath et al. [18]
designed a (1

2 + c)-approximate algorithm, where c > 0 is some absolute constant.
For MWbM in the single pass, arbitrary order stream setting, Levin and Wajc [30] designed a 1

3+ε -
approximate algorithm using a primal-dual framework, which was recently improved to 1

2+ε by Huang and
Sellier [25]. A variant of the latter algorithm requires Õ(|Fmax| log1+ε(W/ε)) bits, where |Fmax| is the size of
a max cardinality b-matching in G.

Edge Colorings and Unweighted k-DM The k-DM problem is equivalent to a weighted variant of the
Edge Coloring problem; in the latter, the goal is to find the chromatic index of a graph, i.e., the minimum
number of colors needed such that adjacent edges receive distinct colors. Vizing [40] showed that the chromatic
index of any simple graph G is in {∆, ∆ + 1}, but it is NP-hard to decide between them [23]. Hence, most
edge coloring algorithms, like the O(nm) time Misra-Gries algorithm [35], construct (∆ + 1)-edge colorings.
The k-DM problem can be seen as a “maximization” variant of Edge Coloring, where given the number of
colors k as input, the goal is to find a maximum weight subgraph with chromatic index k.

Using this coloring viewpoint, Feige et al. [14] provided several hardness results and approximation
algorithms for unweighted k-DM in the offline setting, which was later improved by Kamiński and Kowalik
[27] for small k. Favrholdt and Nielson [13] additionally gave algorithms for this problem in the online setting.
Recently, El-Hayek et al. [11] developed fully dynamic unweighted k-DM algorithms by reducing it to dynamic
b-matching followed by edge coloring.

4 A Primal-Dual Approach
In this section we extend the streaming algorithm of Paz and Schwartzman (henceforth, PS) [37], and more
specifically the primal-dual interpretation of it by Ghaffari and Wajc [19], for the MWM problem to the
k-DM problem. We begin with an intuitive description of the PS algorithm; for a more formal description, see
Appendix B.1.

Consider the non-streaming setting first. The algorithm chooses an edge with positive weight, includes it
in a stack for candidate matching edges, and subtracts its weight from neighboring edges. It repeats this
process as long as edges with positive weights remain. At the end, we unwind the stack and greedily add
edges in the stack to the matching. This means that once an edge is added to the matching, any neighboring
edges in the stack cannot be added to the matching.

To adapt the algorithm to the streaming setting, an approximate dual variable ϕ(v) is kept for each vertex
v that accumulates the weights of the edges incident on v that are added to the stack. When an edge arrives,
we subtract the sum of the ϕ(·) variables of the endpoints of the edge from its weight. If this reduced weight
is positive, it is added to the stack; otherwise, it is discarded. The rest of the algorithm proceeds as in the
non-streaming setting. To bound the size of the stack to O(n log n), we need one more idea, which is to add
an edge e = (u, v) to the stack only if its weight is greater than (1 + ε)(ϕ(u) + ϕ(v)), for a small constant

4

Algorithm 1 Semi-Streaming k-DM
Input: A stream of edges E, an integer k, and a constant ε > 0
Output: A 1

3+ε -approximate k-disjoint matching M using O(nk log2 n) bits of space
1: ▷ Initialization
2: ∀v ∈ V,∀c ∈ [k] : ϕ(c, v)← 0
3: S ← {S1, . . . ,Sk}, where S(c) denotes stack Sc

4: ▷ Streaming Phase
5: for e = (u, v) ∈ E do
6: for c ∈ [k] do
7: ϕc = ϕ(c, u) + ϕ(c, v)
8: if w(e) ≥ (1 + ε)ϕc then
9: w′(c, e)← w(e)− ϕc

10: ϕ(c, u)← ϕ(c, u) + w′(c, e)
11: ϕ(c, v)← ϕ(c, v) + w′(c, e)
12: S(c).push(e); break

13: ▷ Post-Processing
14: ∀c ∈ [k] : Mc ← ∅
15: for c ∈ [k] do
16: while S(c) is not empty do
17: e = (u, v)← S(c).pop()
18: if V (Mc) ∩ {u, v} = ∅ then
19: Mc ←Mc ∪ {e}
20: else
21: for j ∈ [c + 1..k] do
22: ϕj = ϕ(j, u) + ϕ(j, v)
23: if w(e) ≥ (1 + ε)ϕj then
24: w′(j, e)← w(e)− ϕj

25: ϕ(j, u)← ϕ(j, u) + w′(j, e)
26: ϕ(j, v)← ϕ(j, v) + w′(j, e)
27: S(j).push(e); break
28: return M = {M1, . . . , Mk}

ε > 0. This ensures that neighboring edges added to the stack have weights that increase exponentially in
(1 + ε). It can be shown that if the edge weights are polynomial in n, then the size of the stack is bounded as
desired and that the approximation ratio becomes 1

2+ε .
We adapt this general idea to develop our algorithm for k-DM in Algorithm 1. For each color c ∈ [k],

we maintain a stack S(c) that stores the eligible edges for the cth matching. A matching Mc is then
greedily computed from each stack S(c) in the post-processing phase. The algorithm maintains approximate
dual variables ϕ(c, v) for each color c ∈ [k] and v ∈ V , and uses ε > 0 to process only sufficiently heavy
edges. For an edge e = (u, v) in the stream, we iterate over the colors c ∈ [k] to verify whether w(e) ≥
(1 + ε) (ϕ(c, u) + ϕ(c, v)). If the condition is not satisfied for any color, then the edge is discarded. Otherwise,
let ℓ be the first color that satisfies it. The algorithm computes a reduced weight w′(ℓ, e) for e by subtracting
the sum ϕ(ℓ, u) + ϕ(ℓ, v) from its weight w(e), pushes e into S(ℓ), and increases ϕ(ℓ, u) and ϕ(ℓ, v) by the
reduced weight w′(ℓ, e).

In the post-processing phase, each stack S(c) is processed in increasing order of the color c, and the edges
in each stack are processed in reverse order in which they were added (i.e., by popping from the stack). For
an edge e = (u, v) popped from S(c), if no earlier popped edge from S(c) is incident on either u or v in Mc,
then e is added to Mc. Otherwise, the algorithm checks to see if e can be added to a later stack S(j) where
j > c, again based on the condition that w(e) ≥ (1 + ε) (ϕ(j, u) + ϕ(j, v)). At termination, the algorithm
returns a k-disjoint matching M = {M1, . . . , Mk}.

4.1 Analysis of the Algorithm
We prove the approximation ratio of Algorithm 1 using the standard primal-dual framework and adapting
the analysis in [19]. We first show how to derive a feasible dual solution for the dual (D) from the ϕ(·, ·)
values. By weak duality, the resulting dual objective immediately provides an upper bound on the weight
of an optimal k-DM solution. Lemmas 1 and 2 then show lower bounds between the value of the k-disjoint
matching M constructed by Algorithm 1 and the dual variables, which are then used to prove that M is

1
3+2ε -approximate in Theorem 1. We also prove the space complexity of the algorithm in Lemma 3.

4.1.1 Dual Feasibility

At termination, we set y(c, v) = (1 + ε) ϕ(c, v) for all c ∈ [k] and v ∈ V . Recall that y(c, v) is a dual variable
from (D), and ϕ(c, v) is an approximate dual variable used in Algorithm 1. Unlike in classical MWM, for
k-DM, we have to satisfy the dual constraints of each edge for all c ∈ [k]. Although the dual variables z(·)

5

are unused in the algorithm, they help ensure dual feasibility; see below. If an edge e = (u, v) is not in any
matching (i.e, e is discarded either in the streaming or post-processing phase) then y(c, u) + y(c, v) ≥ w(e)
for all c ∈ [k], which satisfies the constraint. However, if e ∈ Mℓ for some ℓ ∈ [k], the dual constraints for
c ∈ [ℓ + 1..k] may be violated. Thus, we set

z(e) = max
{

0, max
c∈[k]

{w(e)− (1 + ε) (ϕ(c, u) + ϕ(c, v))}
}

. (1)

The following claim is immediate.

Claim 1. For all vertices v ∈ V , edges e ∈ E, and c ∈ [k], the dual variables y(c, v) and z(e) defined above
constitute a feasible solution to (D).

4.1.2 Approximation Ratio

To prove the approximation ratio, we first separately relate the weight of the solution returned by Algorithm 1
to the summations of the ϕ(·, ·) and z(·) variables.

Lemma 1. The solution M output by Algorithm 1 satisfies w(M) ≥ 1
2

∑
c∈[k]

∑
v∈V ϕ(c, v).

Proof. It suffices to show that w(Mc) ≥ 1
2

∑
v∈V ϕ(c, v), for any matching Mc ∈M. Let Ec be the set of edges

that were pushed to the stack S(c) at some point in either the streaming (line 8) or the post-processing (line
23) phases. Note that only edges in Ec could have caused the ϕ(c, ·) values to increase. For ease of analysis,
for an edge e′ = (s, t) ∈ Ec let ϕold

e′ (c, ·) and ϕnew
e′ (c, ·) denote the ϕ(c, ·) values before and after e′ is pushed to

S(c), respectively. By definition of how we update the ϕ(c, ·) values, we have ϕnew
e′ (c, s) = ϕold

e′ (c, s) + w′(c, e′),
ϕnew

e′ (c, t) = ϕold
e′ (c, t) + w′(c, e′), and ϕnew

e′ (c, r) = ϕold
e′ (c, r) for all r ∈ V \ {s, t}. This implies

w′(c, e′) = 1
2

∑
x∈e′

ϕnew
e′ (c, x)− ϕold

e′ (c, x). (2)

Upon termination of Algorithm 1, since initially ϕ(c, v) = 0 for all v ∈ V , we also have that

ϕ(c, v) =
∑

e′∈Ec

ϕnew
e′ (c, v)− ϕold

e′ (c, v). (3)

Now for an edge e = (u, v) ∈Mc, let

P<(c, e) := {e′ ∈ Ec : e ∩ e′ ̸= ∅, e′ added to S(c) before e} ,

i.e., the set of edges adjacent to e that were pushed to S(c) before e was, and let P(c, e) := P<(c, e) ∪ {e}.
Note that since we construct Mc greedily, no edge e′ ∈ P<(c, e) is included in Mc and Ec =

⋃
e∈Mc

P(c, e).
By definition of how we update the ϕ(c, ·) values, we have that ϕold

e (c, u) + ϕold
e (c, v) =

∑
e′∈P<(c,e) w′(c, e′).

Additionally, by the definition of w′(c, e),

w(e) = w′(c, e) + ϕold
e (c, u) + ϕold

e (c, v) =
∑

e′∈P(c,e)

w′(c, e′) = 1
2

∑
e′∈P(c,e)

∑
x∈e′

ϕnew
e′ (c, x)− ϕold

e′ (c, x),

where the last equality follows by Eq. (2). Hence,

w(Mc) =
∑

e∈Mc

w(e) = 1
2

∑
e∈Mc

∑
e′∈P(c,e)

∑
x∈e′

ϕnew
e′ (c, x)− ϕold

e′ (c, x)

≥ 1
2

∑
e∈Ec

∑
v∈e

ϕnew
e (c, v)− ϕold

e (c, v)

= 1
2

∑
v∈V

∑
e∈Ec

ϕnew
e (c, v)− ϕold

e (c, v) = 1
2

∑
v∈V

ϕ(c, v).

The inequality follows since each edge e′ = (u, v) ∈ Ec \Mc appears in at least one and at most two P(c, ·)
sets (say, if there exists e1, e2 ∈Mc that u and v are incident on, respectively) and the last equality follows
by Eq. (3). ■

6

Lemma 2. The solution M output by Algorithm 1 satisfies w(M) ≥
∑

e∈E z(e).
Proof. From the definition of z(·) in Eq. (1), we have z(e) ≤ w(e) for all e ∈ E. Moreover, we can show that
z(e) = 0 for each edge e = (u, v) /∈M. This holds since either e was discarded during the streaming phase,
or during the post-processing phase. In either case, w(e) < (1 + ε)(ϕ(c, u) + ϕ(c, v)) for all c ∈ [k], which
gives z(e) = 0. Hence,

∑
e∈E z(e) =

∑
e∈M z(e) +

∑
e∈E\M z(e) ≤

∑
e∈M w(e) = w(M). ■

Using Lemmas 1 and 2 and weak duality, we can now show the approximation ratio.
Theorem 1. For any constant ε > 0, the k-disjoint matching M returned by Algorithm 1 is a 1

3+2ε -
approximate solution to k-DM.
Proof. Let M∗ be an optimal solution to k-DM. By weak duality and the fact that (P) is an LP-relaxation of
k-DM, we have that w(M∗) ≤

∑
c∈[k]

∑
v∈V y(c, v) +

∑
e∈E z(e) for the dual variables y(·, ·) and z(·) defined

in Claim 1. Recalling that we set y(c, v) = (1 + ε)ϕ(c, v), Lemmas 1 and 2 imply that (2(1 + ε))w(M) ≥∑
c∈[k]

∑
v∈V y(c, v) and w(M) ≥

∑
e∈E z(e), respectively. Combining these, we obtain

(3 + 2ε)w(M) ≥
∑
c∈[k]

∑
v∈V

y(c, v) +
∑
e∈E

z(e) ≥ w(M∗),

which when rearranged gives w(M) ≥ 1
3+2ε w(M∗). ■

4.1.3 Time and Space Complexity

The total runtime of Algorithm 1 is O(km), which follows as the processing time for each edge is O(k) as
it may be considered for insertion into each of the k stacks. Additionally, the size of each stack is trivially
bounded by m, so the post-processing step of unwinding the stacks takes O(km) time. The space complexity
of Algorithm 1 can also easily be bound. We first make the following useful observation.
Observation 1. When an edge e = (u, v) gets pushed to a stack S(c), both ϕ(c, v) and ϕ(c, u) increase by at
least a factor of 1 + ε.
Proof. Let ϕold

e (c, ·) and ϕnew
e (c, ·) be the values of ϕ(c, ·) before and after e is pushed to S(c), respectively.

Note that since e is pushed to S(c), it must be that w(e) ≥ (1 + ε)Φold
e , where Φold

e := ϕold
e (c, u) + ϕold

e (c, v).
Additionally, by how we update the ϕ(c, ·) values, we have ϕnew

e (c, v) − ϕold
e (c, v) = w′(c, e) = w(e) − Φold

e .
Thus,

ϕnew
e (c, v)− ϕold

e (c, v) = w(e)− Φold
e ≥ (1 + ε)Φold

e − Φold
e ≥ εϕold

e (c, v).

Rearranging, we get ϕnew
e (c, v) ≥ (1 + ε)ϕold

e (c, v). The same argument holds for vertex u. ■

Lemma 3. For any constant ε > 0, Algorithm 1 uses O(nk log2 n) bits of space.
Proof. Consider a vertex v ∈ V and color c ∈ [k]. Let e = (u, v) be an edge that is pushed to S(c), and
let ϕold

e (c, ·) and ϕnew
e (c, ·) denote the values of ϕ(c, ·) before and after e is pushed to S(c), respectively.

Suppose that after e is pushed, we have that v is incident on d edges in S(c). For the special case of d = 1
corresponding to the first edge v is incident on that is included in S(c), we can derive a lower bound on
ϕnew

e (c, v). We use ϕold
e (c, v) = 0 and w(e) ≥ (1 + ε)ϕold

e (c, u) to obtain

ϕnew
e (c, v) = w′(c, e) = w(e)− ϕold

e (c, u) ≥ w(e)− w(e)
1 + ε

≥ εwmin

1 + ε
.

That is, the minimum non-zero value of ϕ(c, v) is at least εwmin
1+ε . Using this together with Observation 1

implies that for arbitrary values of d, ϕnew
e (c, v) ≥ εwmin

1+ε (1+ε)d−1. Moreover, by definition of how we compute
reduced weights and update the ϕ(c, ·) values, we have that ϕnew

e (c, v) ≤ wmax. Recalling that W = wmax
wmin

and using these two bounds, we find that (1 + ε)d−2 ≤Wε−1. Taking the logarithm of both sides, we get

d ≤ 2 + log1+ε(Wε−1) = O(log n),

since we assume ε is constant and W is poly(n). That is, v can be incident on at most O(log n) edges in
S(c). Hence, |S(c)| = O(n log n) and the total number of edges stored in all the stacks is O(nk log n). Each
edge weight requires O(log n) bits; similarly, each ϕ(·, ·) variable requires O(log n) bits as it is the sum of at
most ∆ < n edge weights, giving the space complexity of O(nk log2 n) bits. ■

7

5 A b-Matching Based Approach
Recall that a b-matching generalizes a matching by allowing each vertex to be incident to at most b(v)
matched edges for some function b : V → Z+. When b(v) = k for all v ∈ V , where k is some positive integer,
we refer to the matching as a k-matching and consider the Maximum Weight k-Matching (MWkM) problem.
Note that k-disjoint matchings always induce valid k-matchings, but the reverse need not hold (e.g., the
triangle graph with k = 2). In this sense, MWkM provides a relaxation of k-DM (i.e., if F ∗ and M∗ are
optimal solutions to MWkM and k-DM on the same graph, respectively, then w(F ∗) ≥ w(M∗)). This leads
to the following approach to construct a feasible k-disjoint matching:

1. Solve MWkM on the graph G, which gives a k-matching F . Note that ∆F , the maximum degree of a
vertex in the induced graph G[F], may be less than k.

2. Properly (∆F + 1)-edge color the subgraph G[F], which may use up to k + 1 colors.

3. Return M, the collection of edges colored by the k heaviest color classes.

This approach was originally used for unweighted k-DM by Feige et al. [14], where they showed it provided
a (1− 1

k+1)-approximation guarantee. Here we extend this to weighted k-DM and show that the reduction is
approximation preserving.

Lemma 4. Let F be an α-approximate solution to MWkM on a graph G. If the induced subgraph G[F] is
properly (∆F + 1) colored, the set of edges colored by the k heaviest color classes is an α(1− 1

k+1)-approximate
solution to k-DM on G.

Proof. Let M represent a solution to k-DM on G. Additionally, let F ∗ and M∗ be the optimal solutions to
MWkM and k-DM on G, respectively.

By definition of a k-matching, we have that ∆F ≤ k. If ∆F < k, then the edge coloring used at most
k colors, and we can return M = {M1, . . . , Mk}, where Mi is the set of edges colored with i for i ∈ [k].
In this case, we have w(M) = w(F). Otherwise, if ∆F = k, then the edge coloring may have used k + 1
colors. Without loss of generality, let k + 1 denote the color class with the minimum weight. Again let
M = {M1, . . . , Mk}. By discarding the edges with color k + 1, at most a 1

k+1 fraction of the weight of F is
lost. Thus, in either case

w(M) ≥
(

1− 1
k + 1

)
w(F) ≥ α

(
1− 1

k + 1

)
w(F ∗) ≥ α

(
1− 1

k + 1

)
w(M∗),

where the penultimate inequality follows from the definition of F , and the last inequality follows from MWkM
being a relaxation of k-DM. ■

Note that properly (∆ + 1)-edge coloring a graph G can be done in O(m) space using the O(nm) time
Misra-Gries algorithm [35]. If we use a semi-streaming algorithm for MWkM to handle the streaming process
and find some k-matching F , the remaining steps of the algorithm only require memory linear in |F |, resulting
in a semi-streaming algorithm for k-DM. Using the semi-streaming 1

2+ε -approximation algorithm of Huang
and Sellier [25] for MWbM with b(v) = k for all v ∈ V , Lemma 4 implies a semi-streaming (1

2+ε)(1− 1
k+1)-

approximation algorithm for k-DM. The space requirement is O(nk log2 n) bits, and it is determined by the
Huang and Sellier algorithm. We describe the algorithm formally in Algorithm 2, where SS-bM and Color
refer to the algorithms of Huang and Sellier [25] and Misra and Gries [35], respectively. For completeness, in
Appendices B.2 and B.3 we give a detailed summary of how these algorithms work.

Theorem 2. For any constant ε > 0, Algorithm 2 is a (1
2+ε)(1− 1

k+1)-approximate semi-streaming algorithm
for k-DM that uses O(nk log2 n) bits of space.

The streaming phase requires O(k) processing time per edge, while constructing the k-matching F takes
O(m) time. By definition of a k-matching, |F | = O(kn), so the post-processing coloring step requires O(kn2)
time. Thus the time complexity of Algorithm 2 is O(km + kn2).

8

Algorithm 2 Semi-Streaming k-DM via MWkM
Input: A stream of edges E, an integer k, and a constant ε > 0
Output: A (1

2+ε)(1− 1
k+1)-approximate k-disjoint matching M using Õ(nk) bits of space

1: ▷ Initialization
2: ∀v ∈ V : b(v)← k

3: ▷ Streaming Phase
4: F ← SS-bM(E, b, ε

2) ▷ MWkM

5: ▷ Post-Processing
6: ∆F ← maxv∈V degF (v) ▷ ∆F ≤ k
7: C ← Color(G[F]) ▷ Uses colors [∆F + 1]
8: if ∆F + 1 = k + 1 then
9: Let k + 1 be the color class with min weight

10: ∀i ∈ [k] : Mi ← {e ∈ F : C(e) = i}
11: return M = {M1, . . . , Mk}

6 Heuristic Improvements
In this section, we describe some heuristics we employ to speed up and improve the weight of both streaming
algorithms we have presented.

Dynamic Programming (DP) Based Weight Improvement Manne and Halappanavar [31] have
proposed a general scheme to enhance the weight of a matching by computing two edge-disjoint matchings
M1 and M2. The induced subgraph G[M1 ∪M2] contains only cycles of even length or paths. Utilizing a
linear-time dynamic programming approach, an optimal matching M ′ can be derived from the induced graph
G[M1 ∪M2]. The weight of M ′ is guaranteed only to be at least as large as max {w(M1), w(M2)}, but in
practice this heuristic results in substantially improved weight.

We adapted this method for Algorithm 1 as follows: instead of computing a k-disjoint matching, we first
compute a 2k-disjoint matching. These 2k matchings are then merged into k matchings. While various
strategies can be used for this merging process, we have merged the ith matching with the (2k − i + 1)th

matching, for i ∈ [k]. This approach does not change the asymptotic memory or time complexities for
streaming algorithms since each merge requires only O(n) time and space.

Common Color and Merge For the b-matching based Algorithm 2, we used two heuristics. The first
is the common color heuristic described by Hanauer et al. [22], which attempts to color an edge by first
determining if there is a common free color on both of its endpoints before going through the Misra-Gries
routine. The second is the merge heuristic, which is used when the number of color classes is k + 1; it tries
to improve the solution weight by merging the lowest- and second-lowest-weight color classes instead of
completely discarding the lowest-weight one, again through the dynamic programming approach described
above.

7 Experiments and Results
This section reports experimental results for 95 real-world and synthetic graphs. All the codes were executed
on a node of a community cluster computer with 128 cores in the node, where the node is an AMD EPYC
7662 with 1 TB of total memory over all the cores. The machine has three levels of cache memory. The L1
data and instruction caches, the L2 cache, and the L3 cache have 4 MB, 32 MB, and 256 MB of memory,
respectively. The page size of the node is 4 KB.

Our implementation1 uses C++17 and is compiled with g++9.3.0 with the -O3 optimization flag. The
streaming algorithms are simulated by sequentially reading and processing edges from a file using the C++

fstream class. We compare them against several offline algorithms in the DJ-Match software suite developed
by Hanauer et al. [21]. All the streaming and offline algorithms are sequential, and the reported runtimes do
not include file reading times and (for the offline algorithms) graph construction times. For memory, we use
the getrusage system call to report the maximum resident set size (RSS) during the program’s execution.

1Source code: https://github.com/smferdous1/GraST

9

https://github.com/smferdous1/GraST

Algorithm Heuristics Approx. Time Complexity

Grdy-It LS 1/2 O(srt(m) + km)
GPA-It LS ≤ 1/2 O(srt(m) + km)
NC θ = 0.2, Agg=sum ≤ 1/2 O(srt(n) + n · srt(∆) + km)
k-EC CC-RL ≤ 1/2 O(srt(m) + kn2)

Stk DP 1
3+ϵ

O(km)
Stkb CC-M k

(2+ε)(k+1) O(km + kn2)

Table 1: Benchmark approximation algorithms. LS: Local swaps, CC: Common color, RL: Rotate long, M:
Merge, Agg: Aggregation, srt(x): Time complexity of sorting x elements.

7.1 Datasets and Benchmark Algorithms
Real-World and Synthetic Graphs Following [22, 29], we include ten weighted graphs from the SuiteS-
parse Matrix Collection [9] labeled as Small. Similar to [22], we also generated 66 synthetic instances, labeled
as Rmat, using the R-MAT model [6] with 2x vertices, where x ∈ [10, 11, . . . , 20]. We used three initiator
matrices, rmatb = (0.55, 0.15, 0.15, 0.15), rmatg = (0.45, 0.15, 0.15, 0.25), and rmater = (0.25, 0.25, 0.25, 0.25).
For all these graphs, we assign real-valued random weights in the range [1, 219] drawn from uniform or expo-
nential distributions. Our Large dataset consists of six of the largest undirected graphs in the SuiteSparse
Matrix Collection [9], each having more than 1 billion edges. For the unweighted graphs, we assign uniform
random real weights in the range [1, 106]. In Appendix C.1, we list the sizes and degree measures of these
graphs in Tables 3 and 4.

Network Trace Data Similar to [22], our network trace (Trace) dataset consists of i) Facebook Data
Traces [39]: Six production-level traces of three clusters from Facebook’s Altoona Data Center, ii) HPC
Data [2]: MPI traces for four different applications run in parallel, iii) pFabric Data [1, 2]: Three synthetic
pFabric traces generated from Poisson processes with flow rates in {0.1, 0.5, 0.8}. From these trace data, we
pre-compute graphs by assigning the total demand of a pair of nodes (i.e., the number of times they appear
in the trace) as the edge weight. In Appendix C.1, we list detailed statistics of these generated graphs in
Table 3.

Benchmark Algorithms and Heuristics We summarize the algorithms we compare in Table 1. For our
streaming algorithms, we use Stk to denote the primal-dual based Algorithm 1, and Stkb to denote the
b-matching based Algorithm 2. We compare these against four of the offline algorithms that were determined
to be the most practical (in terms of runtime and solution quality) by Hanauer et al. [22]. These include the
iterative Greedy (Grdy-It) and iterative Global Paths algorithms (GPA-It), the NodeCentered algorithm
(NC), and the k-Edge Coloring algorithm (k-EC) that we have described in Section 3. For these four offline
algorithms, we use the heuristics and post-processing steps recommended in [22], which we list in Table 1. We
refer to [22] for a detailed description of these heuristics. For our semi-streaming algorithms, we implement
the three heuristics described in Section 6. We use dp to denote the dynamic programming heuristic for
the Stk algorithm, and cc and m for the common color and merge heuristics, respectively, for the Stkb
algorithm.

7.2 Comparison of Streaming Algorithms
We first compare six variants of our streaming algorithms amongst themselves. For the primal-dual approach,
we include the standard Stk algorithm and the Stk-dp heuristic. For the b-matching-based approach, we
have the CC (common color) and M (merge) heuristics in addition to the standard Stkb algorithm, for a
total of four combinations.

In Figure 2, we show the relative quality results on the Small graphs for the streaming algorithms. We
set ε = 0.001 and tested with k ∈ {2, 4, 8, 16, 32, 64, 96}, but observed that beyond k = 32, all the algorithms
computed similar weights, as at this point, the solutions likely contained nearly the entire graph. Hence,
we only report results up to k = 32. For each graph, algorithm, and k value combination, we conduct five
runs and record the mean runtime, memory usage, and solution weight. We calculate relative time by taking

10

St
k

St
kb

-c
c-

m

St
kb

-c
c

St
kb

-m
St

kb

0.7

0.8

0.9

1.0
R

el
at

iv
e

W
ei

gh
t

(a)

21 22 23 24 25

k

20

21

22

G
eo

.
M

ea
n

of
R

el
.

T
im

e

(b)

21 22 23 24 25

k

20

21

G
eo

.
M

ea
n

of
R

el
.

M
em

.

(c)

Stk Stk-dp Stkb-cc-m Stkb-cc Stkb-m Stkb

Figure 2: Summary plots for Small instances on different streaming algorithms with ε = 0.001. Plot (a) is a
boxplot of relative weights across all instances and k values for each algorithm. Plots (b) and (c) give the
geometric mean of the relative time and memory, respectively, across all instances with increasing k values.
Stk is the baseline algorithm for relative time and memory, while Stk-dp is the baseline for relative weight.

the ratio of the mean runtime for each algorithm to the mean runtime of a baseline algorithm. Relative
memory and relative weight are similarly computed. We choose Stk as the baseline algorithm for runtime
and memory comparisons and Stk-dp as the baseline for weight comparisons. We show geometric means of
the relative weights computed by each algorithm across all graphs and k value combinations as box plots in
Figure 2 (a). The relative time and relative memory metrics across increasing k values are plotted in Figure 2
(b) and (c), respectively.

The relative weight of Stk-dp is always one, so we do not show it in the plot. In terms of median relative
weight (the red line), Stk is the second best, and Stkb-cc-m is the third best. Surprisingly, while the
worst-case approximation guarantee of the primal-dual-based approach is weaker than the b-matching-based
approaches, it provides weights that are better than the latter in nearly all instances. For runtimes, we see
that the fastest algorithm is Stk, while the slowest are Stkb and Stkb-m. Stkb-cc and Stkb-cc-m both
have similar runtimes and are faster than Stkb and Stkb-m. The runtime of Stk-dp is between Stk and
Stkb-cc-m. In terms of memory usage, Stk requires the least, while Stk-dp requires roughly twice as much
memory as Stk(1.76 – 1.86× across k). The other four b-matching-based algorithms behave similarly to each
other and are worse than both Stk and Stk-dp.

From this experiment, we conclude that among these six streaming algorithm variants, the best three are
Stk, Stk-dp, and Stkb-cc-m. Hence, all the remaining experiments will report results only for these three
variants of the streaming algorithms.

7.3 Comparison with Offline Algorithms
Next, we compare the three streaming algorithms with the four offline algorithms listed in Table 1. We show
the relative runtime, memory, and weight plots for the algorithms on the Small dataset in Figure 3. In
Appendix C.2 we show the same metrics for the algorithms on the Rmat dataset in Figure 6. We follow
the experimental settings and computations as in Section 7.2 with Stk as the baseline for relative time and
memory results, and GPA-It with local swaps as the baseline for weight results, as these generally performed
the best on their respective metrics.

We first discuss the Small graph results. All of the streaming algorithms are significantly faster than
the offline ones. The fastest among these is the Stk algorithm, while the slowest is the b-matching based
Stkb-cc-m. Among the offline algorithms, GPA-It is the slowest, more than 20× slower in geometric mean
than Stk, while Grdy-It is more than 15× slower. The other two algorithms are relatively faster with similar
runtimes but still slower than all streaming algorithms. The speedup for Stk w.r.t to NC and k-EC ranges
from 3 to 11 across k. As an example, for k = 8, both NC and k-EC are more than 6× slower than Stk. We
also observe that both NC and k-EC get relatively more efficient as k increases, which was also reported in
[22]. For the memory results, we see that Stk requires the least, while the other two streaming algorithms

11

G
rd

y-
It

k-
E
C

N
C

St
k-

dp St
k

St
kb

-c
c-

m

0.85

0.90

0.95

1.00
R

el
at

iv
e

W
ei

gh
t

(a)

21 22 23 24 25

k

20

21

22

23

24

25

G
eo

.
M

ea
n

of
R

el
.

T
im

e

(b)

21 22 23 24 25

k

21

23

25

27

G
eo

.
M

ea
n

of
R

el
.

M
em

.

(c)

GPA-It Grdy-It k-EC NC Stk-dp Stk Stkb-cc-m

Figure 3: Summary plots the streaming and offline algorithms on Small dataset with ε = 0.001 for the
streaming algorithms. Plot (a) is a boxplot of relative weights across all instances and k values for each
algorithm. Plots (b) and (c) give the geometric mean of the relative time and memory, respectively, across
all instances with increasing k values. Stk is the baseline algorithm for relative time and memory, while
GPA-It is the baseline for relative weight.

take almost twice the memory, on average. All the offline algorithms behave similarly in terms of memory
consumption since they all need to store the entire graph, which dominates the total memory consumption.
We see a substantial memory reduction when using the streaming algorithms, with improvement ranging from
114× to 11× in geometric mean across k. For smaller values of k this reduction is more pronounced.

We now focus on the case k = 8. All the streaming algorithms consume at least 16× less memory than
the offline algorithms, while for Stk it is 32×. For the largest graph (kron_g500-logn21) in this set, we see
all the offline algorithms require at least 45 GB of memory while the streaming algorithms consume less than
1GB of memory. We emphasize that the higher memory requirement of the offline algorithms prohibits them
from being run on larger datasets, as we will see later. While the streaming algorithms are very efficient
in terms of memory and time, we also see they obtain reasonably high solution weights. For the weight
results, we set GPA-It as the baseline algorithm; hence, we do not include it in the box plot. All the offline
algorithms find heavier weights than the streaming algorithms; for the NC and k-EC algorithms, we see
many outliers compared to the other algorithms. Among the streaming algorithms, Stk-dp obtains the
heaviest weight, with only less than 4% median deviation from the best weight. For Stk-dp, the geometric
mean of relative weights is 0.96 at k = 2 and improves to 0.97 at k = 32. The corresponding geometric
mean of relative weights for faster offline algorithms, NC and k-EC are as follows: for k = 2, the means are
0.96 and 0.97, respectively, and for k = 32, they are 0.97 and 0.98, respectively. This highlights Stk-dp’s
comparable quality to the closest practical offline alternatives. The Stk and Stkb-cc-m algorithms compute
weights where the median deviation from the best weight is less than 5% and 6%, respectively.

In Appendix C.2, we include the results for similar experiments on the Rmat dataset in Figure 6. Overall,
a similar conclusion can be drawn as the Small instances. The random graphs generated are much smaller
than the Small instances, and hence the memory improvements obtained by the streaming algorithms are
smaller (6× to 38× in geometric mean). For the Rmat instances, the streaming algorithms obtain better
quality results than the Small instances. The difference between the streaming and the NC and k-EC
algorithms is smaller than seen in the Small instances. Both NC and Stk-dp achieve similar relative
weights, while k-EC is marginally (within 1%) better.

7.4 Large Graph Results
We now discuss our Large graph experiments. Since these graphs require longer runtimes, and our
experiments on the smaller graphs reveal little deviation in runtime and memory across runs (the weight
remains constant as our algorithms are deterministic), we report in Table 2 the results of a single run of
our streaming algorithms. We chose k = 8 and set ε = 0.001 for this experiment. The first three columns
represent the time in seconds, weight, and memory in GB for the baseline Stk algorithm, while the next six

12

Stk Stk-dp Stkb-cc-m

Graph Time (s) Weight Mem.
(GB)

Rel.
Time

% Wt.
Imprv.

Rel.
Mem.

Rel.
Time

% Wt.
Imprv.

Rel.
Mem.

AGATHA_2015 1377.54 1.60e+14 49.41 1.64 0.67 1.90 0.99 -1.51 1.69
MOLIERE_2016 736.75 8.26e+6 23.28 1.64 2.03 1.78 1.48 0.26 1.22
GAP-kron 629.37 1.20e+10 29.66 1.85 3.05 1.90 1.06 -0.46 1.62
GAP-urand 679.73 9.83e+10 53.25 1.67 3.71 1.57 2.11 -1.30 1.75
com-Friendster 475.13 1.02e+14 22.66 1.62 2.84 1.81 1.49 -4.58 1.54
mycielskian20 86.14 1.99e+12 0.65 2.34 5.30 2.17 0.98 -10.10 1.03

Table 2: Comparison of streaming algorithms for k = 8 and ε = 0.001 on Large graphs.

columns represent the relative metrics for the Stk-dp and Stkb-cc-m algorithms. For all the instances, using
Stk-dp yields an increase in solution quality over Stk, with the average increase being 2.93%. Consistent
with the results on smaller graphs, Stkb-cc-m obtains the lowest weight among the streaming algorithms
with weight decreasing in almost all the instances compared to Stk and the average decrease is 2.95%. In
terms of memory and runtime, Stk-dp and Stkb-cc-m require at most twice as much memory and time
as the Stk algorithm. The geometric mean of relative memory and runtime of Stk-dp is 1.85 and 1.78,
respectively, and for Stkb-cc-m they are 1.45 and 1.30, respectively.

For the offline algorithms, we chose NC and k-EC, since the previous experiments show they have much
lower runtimes than the other two iterative matching algorithms. These algorithms could only be run on
the smallest graph in this dataset (mycielskian20) while respecting the 1 TB memory limit. For this graph,
k-EC and NC obtained weights of 1.70e+12 and 1.68e+12, respectively, which are around 18% less than
Stk-dp. The k-EC algorithm required more than two hours to compute a solution, while NC required about
twenty minutes. This is much worse than any of the streaming algorithms, as even the slowest one (Stk-dp)
required less than four minutes. Both the NC and k-EC algorithms used around 640 GB of memory, while
the memory usage of the streaming algorithms ranges from 660 MB for Stk to 1.4 GB for Stk-dp, which
provides at least a 450-fold reduction.

Effect of varying ε In Appendix C.2, we show experimental results highlighting the effects of varying ε
on the Large graphs for the Stk-dp algorithm in Figure 7. The ε parameter influences both the memory
consumption and weight of the solution returned by the algorithm, and we find that as expected, increasing ε
decreases both of these values. However, in almost all cases, the decrease in weight is relatively much smaller
than the decrease in memory, which suggests that using larger values of ε in practice can substantially decrease
the memory usage of the algorithm without significantly decreasing the weight of the solution returned.

7.5 Trace Graph Results
Figure 4 shows experimental results for the graphs generated from the Facebook datacenter data. In
Appendix C.2 we show the experimental results for the HPC and pFabric data in Figures 8 and 9, respectively.
We use the same baseline algorithms and similar setup as the Small dataset experiments. Overall the
conclusion is similar to the earlier experiments, except that for these graphs, Stkb-cc-m is the fastest. This
is because the edge coloring step in the post-processing for the Facebook graphs is much faster than for the
other graphs. For Stk-dp, Stk and Stkb-cc-m the median values of the geometric means of the relative
weights are 0.96, 0.94, and 0.92, respectively. There are also substantial runtime and memory (10× – 512×)
improvements compared to the offline algorithms.

8 Conclusions and Future Work
Earlier work on offline maximum weight matching algorithms showed that exact algorithms do not terminate
on graphs with hundreds of millions of edges. Hence, offline approximation algorithms with near-linear time
complexities based on short augmentations were designed [38]. However, our results show that on graphs

13

G
rd

y-
It

k-
E
C

N
C

St
k-

dp St
k

St
kb

-c
c-

m

0.85

0.90

0.95

1.00
R

el
at

iv
e

W
ei

gh
t

(a)

21 22 23 24 25 26

k

2−1

21

23

25

G
eo

.
M

ea
n

of
R

el
.

T
im

e

(b)

21 22 23 24 25 26

k

21

23

25

27

29

G
eo

.
M

ea
n

of
R

el
.

M
em

.

(c)

GPA-It Grdy-It k-EC NC Stk-dp Stk Stkb-cc-m

Figure 4: Summary plots the streaming and offline algorithms on Facebook Trace dataset with ε = 0.001
for the streaming algorithms. Plot (a) is a boxplot of relative weights across all instances and k values for
each algorithm. Plots (b) and (c) give the geometric mean of the relative time and memory, respectively,
across all instances with increasing k values. Stk is the baseline algorithm for relative time and memory,
while GPA-It is the baseline for relative weight.

with billions of edges, even these algorithms require over 1 TB of memory for the k-DM problem, and do not
terminate on such graphs.

Streaming algorithms are designed to reduce memory usage, and our streaming k-DM algorithms effectively
reduce it by one to two orders of magnitude on our test set. Our results also show that the streaming
algorithms are theoretically and empirically faster. In particular, we conclude that the Stk-dp algorithm is
the best performer since it only requires modestly more memory and runtime than the Stk algorithm while
still computing solutions comparable (within 5%) to the best offline algorithm. Despite its weaker worst-case
approximation ratio, we also find that Stk consistently outperforms Stkb-cc-m in solution weight. This
raises the question of whether the approximation ratio of Stk could be improved to 1

2+ε .

14

References
[1] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji Prabhakar,

and Scott Shenker. pFabric: Minimal near-optimal datacenter transport. ACM SIGCOMM Computer
Communication Review, 43(4):435–446, 2013. doi:10.1145/2534169.2486031. 10

[2] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. On the complexity of traffic traces and
implications. Proc. of the ACM on Measurement and Analysis of Computing Systems, 4(1):1–29, 2020.
doi:10.1145/3393691.3394205. 10

[3] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini
Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and Hugh Williams. Sirius: A flat datacenter network
with nanosecond optical switching. In Proc. of the 2020 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM 2020), pages 782–797, 2020. doi:10.1145/3387514.3406221. 2,
18

[4] Marcin Bienkowski, David Fuchssteiner, Jan Marcinkowski, and Stefan Schmid. Online dynamic
b-matching: With applications to reconfigurable datacenter networks. SIGMETRICS Performance
Evaluation Review, 48(3):99–108, 2021. doi:10.1145/3453953.3453976. 2, 18

[5] Marcin Bienkowski, David Fuchssteiner, and Stefan Schmid. Optimizing reconfigurable optical datacenters:
The power of randomization. In Proc. of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2023), pages 1–11. ACM, 2023. doi:10.1145/3581784.3607057.
2, 18

[6] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model for graph
mining. In Proc. of the 2004 SIAM International Conference on Data Mining (SDM 2004), pages
442–446, 2004. doi:10.1137/1.9781611972740.43. 10

[7] Ernest J. Cockayne, Bert L. Hartnell, and Stephen T. Hedetniemi. A linear algorithm for disjoint
matchings in trees. Discrete Mathematics, 21(2):129–136, 1978. doi:10.1016/0012-365X(78)90085-7.
2, 18

[8] Michael S. Crouch and Daniel M. Stubbs. Improved streaming algorithms for weighted matching, via
unweighted matching. In Proc. of the 17th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX 2014), pages 96–104, 2014. doi:10.4230/LIPIcs.
APPROX-RANDOM.2014.96. 4

[9] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM Transactions
on Mathematical Software, 38(1), 2011. doi:10.1145/2049662.2049663. 10

[10] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965. doi:
10.4153/CJM-1965-045-4. 3

[11] Antoine El-Hayek, Kathrin Hanauer, and Monika Henzinger. On b-matching and fully-dynamic maximum
k-edge coloring, 2023. arXiv:2310.01149, doi:10.48550/arXiv.2310.01149. 4, 18

[12] Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guarantees for
weighted matching in the semi-streaming model. SIAM Journal on Discrete Mathematics, 25(3):1251–
1265, 2011. doi:10.1137/100801901. 4

[13] Lene M. Favrholdt and Morten N. Nielsen. On-line edge-coloring with a fixed number of colors.
Algorithmica, 35:176–191, 2003. doi:10.1007/s00453-002-0992-3. 4

[14] Uriel Feige, Eran Ofek, and Udi Wieder. Approximating maximum edge coloring in multigraphs. In
Proc. of the 5th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX 2002), pages 108–121, 2002. doi:10.1007/3-540-45753-4_11. 1, 2, 3, 4, 8, 18

15

https://doi.org/10.1145/2534169.2486031
https://doi.org/10.1145/3393691.3394205
https://doi.org/10.1145/3387514.3406221
https://doi.org/10.1145/3453953.3453976
https://doi.org/10.1145/3581784.3607057
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1016/0012-365X(78)90085-7
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://arxiv.org/abs/2310.01149
https://doi.org/10.48550/arXiv.2310.01149
https://doi.org/10.1137/100801901
https://doi.org/10.1007/s00453-002-0992-3
https://doi.org/10.1007/3-540-45753-4_11

[15] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph
problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207–216, 2005. doi:
10.1016/j.tcs.2005.09.013. 1, 4

[16] SM Ferdous, Alex Pothen, and Mahantesh Halappanavar. Streaming matching and edge cover in practice.
In Leo Liberti, editor, Proc. of the 22nd International Symposium on Experimental Algorithms (SEA
2024), volume 301, 2024. 4, 19

[17] SM Ferdous, Alex Pothen, Arif Khan, Ajay Panyala, and Mahantesh Halappanavar. A parallel ap-
proximation algorithm for maximizing submodular b-matching. In Proc. of the 2021 SIAM Con-
ference on Applied and Computational Discrete Algorithms (ACDA21), pages 45–56, 2021. doi:
10.1137/1.9781611976830.5. 18

[18] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings via
unweighted augmentations. In Proc. of the 2019 ACM Symposium on Principles of Distributed Computing
(PODC 2019), pages 491–500, 2019. doi:10.1145/3293611.3331603. 4

[19] Mohsen Ghaffari and David Wajc. Simplified and space-optimal semi-streaming (2+ϵ)-approximate
matching. In Proc. of the 2nd Symposium on Simplicity in Algorithms (SOSA 2019), pages 13:1–13:8,
2019. doi:10.4230/OASIcs.SOSA.2019.13. 1, 4, 5, 18, 19

[20] Kathrin Hanauer, Monika Henzinger, Lara Ost, and Stefan Schmid. Dynamic demand-aware link schedul-
ing for reconfigurable datacenters. In Proc. of the 42nd IEEE Conference on Computer Communications
(INFOCOM 2023), 2023. doi:10.48550/arXiv.2301.05751. 2, 18

[21] Kathrin Hanauer, Monika Henzinger, Stefan Schmid, and Jonathan Trummer. DJ-Match/DJ-Match:
Version 1.0.0, Jan 2022. doi:10.5281/zenodo.5851268. 9

[22] Kathrin Hanauer, Monika Henzinger, Stefan Schmid, and Jonathan Trummer. Fast and heavy disjoint
weighted matchings for demand-aware datacenter topologies. In Proc. of the 41st IEEE Conference on
Computer Communications (INFOCOM 2022), pages 1649–1658, 2022. doi:10.1109/INFOCOM48880.
2022.9796921. 1, 2, 3, 9, 10, 11, 18

[23] Ian Holyer. The NP-Completeness of edge-coloring. SIAM Journal on Computing, 10(4):718–720, 1981.
doi:10.1137/0210055. 4

[24] Stefan Hougardy. Linear time approximation algorithms for degree constrained subgraph problems. In
William Cook, László Lovász, and Jens Vygen, editors, Research Trends in Combinatorial Optimization,
pages 185–200. Springer Verlag, 2009. doi:10.1007/978-3-540-76796-1_9. 18

[25] Chien-Chung Huang and François Sellier. Semi-streaming algorithms for submodular function maxi-
mization under b-matching constraint. In Proc. of the 24th International Conference on Approxima-
tion Algorithms for Combinatorial Optimization Problems (APPROX 2021), pages 14:1–14:18, 2021.
doi:10.4230/LIPIcs.APPROX/RANDOM.2021.14. 1, 2, 4, 8, 19, 20

[26] Tony Jebara, Jun Wang, and Shih-Fu Chang. Graph construction and b-matching for semi-supervised
learning. In Proc. of the 26th Annual International Conference on Machine Learning (ICML 2009),
pages 441–448, 2009. doi:10.1145/1553374.1553432. 18

[27] Marcin Kamiński and Łukasz Kowalik. Beyond the Vizing’s bound for at most seven colors. SIAM
Journal on Discrete Mathematics, 28(3):1334–1362, 2014. doi:10.1137/120899765. 4

[28] Michael Kapralov. Space lower bounds for approximating maximum matching in the edge arrival model.
In Proc. of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 1874–1893,
2021. doi:10.1137/1.9781611976465.112. 4

[29] Arif Khan, Krzysztof Choromanski, Alex Pothen, S. M. Ferdous, Mahantesh Halappanavar, and Antonino
Tumeo. Adaptive anonymization of data using b-edge cover. In Proc. of the 2018 International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC 2018), pages 59:1–59:11, 2018.
doi:10.1109/SC.2018.00062. 10, 18

16

https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1137/1.9781611976830.5
https://doi.org/10.1137/1.9781611976830.5
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.4230/OASIcs.SOSA.2019.13
https://doi.org/10.48550/arXiv.2301.05751
https://doi.org/10.5281/zenodo.5851268
https://doi.org/10.1109/INFOCOM48880.2022.9796921
https://doi.org/10.1109/INFOCOM48880.2022.9796921
https://doi.org/10.1137/0210055
https://doi.org/10.1007/978-3-540-76796-1_9
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.14
https://doi.org/10.1145/1553374.1553432
https://doi.org/10.1137/120899765
https://doi.org/10.1137/1.9781611976465.112
https://doi.org/10.1109/SC.2018.00062

[30] Roie Levin and David Wajc. Streaming submodular matching meets the primal-dual method. In Proc.
of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 1914–1933, 2021.
doi:10.1137/1.9781611976465.114. 4

[31] Fredrik Manne and Mahantesh Halappanavar. New effective multithreaded matching algorithms. In
Proc. of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium (IPDPS 2014),
pages 519–528, 2014. doi:10.1109/IPDPS.2014.61. 9

[32] Jens Maue and Peter Sanders. Engineering algorithms for approximate weighted matching. In Proc.
of the 6th International Conference on Experimental Algorithms (WEA 2007), pages 242–255, 2007.
doi:10.1007/978-3-540-72845-0_19. 3

[33] Andrew McGregor. Finding graph matchings in data streams. In Proc. of the 8th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2005), pages 170–181,
2005. doi:10.1007/11538462_15. 4

[34] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen, Alex C. Snoeren,
and George Porter. Rotornet: A scalable, low-complexity, optical datacenter network. In Proc. of the
2017 Conference of the ACM Special Interest Group on Data Communication (SIGCOMM 2017), pages
267–280, 2017. doi:10.1145/3098822.3098838. 2, 18

[35] Jayadev Misra and David Gries. A constructive proof of Vizing’s Theorem. Information Processing
Letters, 41(3):131–133, 1992. doi:10.1016/0020-0190(92)90041-S. 3, 4, 8, 20, 21

[36] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in Theoretical
Computer Science, 1(2):117–236, 2005. doi:10.1561/0400000002. 1

[37] Ami Paz and Gregory Schwartzman. A (2+ϵ)-approximation for maximum weight matching in the
semi-streaming model. ACM Transactions on Algorithms, 15(2):18:1–18:15, 2019. doi:10.1145/3274668.
1, 2, 4, 18, 19

[38] Alex Pothen, SM Ferdous, and Fredrik Manne. Approximation algorithms in combinatorial scientific
computing. Acta Numerica, 28:541–633, 2019. doi:10.1017/S0962492919000035. 13, 18

[39] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. Inside the social
network’s (datacenter) network. In Proc. of the 2015 ACM Conference on Special Interest Group on
Data Communication, pages 123–137, 2015. doi:10.1145/2785956.2787472. 10

[40] Vadim G. Vizing. The chromatic class of a multigraph. Cybernetics, 1(3):32–41, 1965. doi:10.1007/
BF01885700. 4

[41] Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–20, 2012.
doi:10.1007/s00453-010-9438-5. 4

17

https://doi.org/10.1137/1.9781611976465.114
https://doi.org/10.1109/IPDPS.2014.61
https://doi.org/10.1007/978-3-540-72845-0_19
https://doi.org/10.1007/11538462_15
https://doi.org/10.1145/3098822.3098838
https://doi.org/10.1016/0020-0190(92)90041-S
https://doi.org/10.1561/0400000002
https://doi.org/10.1145/3274668
https://doi.org/10.1017/S0962492919000035
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1007/BF01885700
https://doi.org/10.1007/BF01885700
https://doi.org/10.1007/s00453-010-9438-5

A Applications and Offline Algorithms
General Applications As stated before, unweighted k-DM has been previously studied in [7, 14]. Feige et
al. [14] motivate the problem by an application in scheduling connections in satellite networks. Cockayne et
al. [7] motivate unweighted 2-DM in bipartite graphs with a job assignment problem where a max cardinality
2-disjoint matching implies that on two successive days, maximum assignments can be scheduled such that
no person performs the same job twice. This easily generalizes to a weighted setting where the goal is to
schedule these disjoint assignments while maximizing some utility. As k-DM is closely related to MWbM
(with b(v) = k for all v ∈ V), it is also potentially relevant to applications where b-matchings are used, such
as graph construction in machine learning [26], load balancing in parallel environments [17], and privacy
preservation in datasets [29].

k-DM in Reconfigurable Datacenter Networks Network traffic in datacenters is growing explosively
due to their relevance to data science and machine learning. Since fixed topologies for networks that route
data are oblivious to dynamically changing data traffic, reconfigurable optical technologies offer a promising
alternative to existing static network designs. They augment static datacenter networks with reconfigurable
optical matchings, where one edge-disjoint optical matching is used for each optical circuit switch. These
optical matchings provide direct connectivity between racks, which allows for heavy traffic demands (elephant
flows) to be routed through them. The remainder of the traffic demands (mice flows) are routed on static
networks. Thus optical matchings can be adapted to meet dynamic traffic demands and can exploit temporal
and spatial structure in the traffic data. The underlying optimization problem then becomes how these optical
matchings that carry elephant flows can be computed quickly and efficiently. Matchings and b-matchings in
offline, online, and dynamic settings (but not the semi-streaming setting) have been explored in this context
in previous work; see among others [3, 4, 5, 11, 20, 22, 34]. In particular, for the offline k-DM problem, which
models the scenario where there are k optical switches and some central control plane has access to a traffic
demand matrix, Hanauer et al. [22] provided several approximation algorithms and experimental results.

Offline Approximation Algorithms for MWM and MWbM A number of offline approximation
algorithms have been designed in recent years for MWM and MWbM, many of which have also been
implemented with codes available. Among these algorithms are Greedy, Locally Dominant, Path-growing,
GPA, Suitor, etc. Two surveys describing this extensive body of work are found in [24, 38]. These studies
show that matching algorithms that employ short augmentations lead to constant-factor approximation ratios
(e.g., 1

2 , (2
3 − ε)) and near linear time complexities; practically they are fast and compute solutions with

weights a few percentages off from being optimal, and outperform more involved algorithms with better
worst-case approximation ratios (e.g., (1− ε)) both in terms of time and matching weight.

B Related Algorithms
B.1 Semi-Streaming Matching
The breakthrough 1

2+ε -approximate semi-streaming algorithm (PS) for maximum weighted matching is due
to Paz and Schwartzman [37]. The original algorithm was analyzed using local ratio techniques, but Ghaffari
and Wajc [19] later provided a simpler primal-dual analysis of the algorithm which we adopt here. The
primal-dual formulation of the MWM problem is shown in (P-MWM) and (D-MWM).

The method is shown in Algorithm 3. It initializes the approximate dual variables (the vector ϕ) to zero,
and then processes the streaming edges one by one. When an edge e arrives, the algorithm decides whether to
store it in the set of candidate matching edges (the stack S) or to discard it. This decision is based on whether
the dual constraint (shown in line 6) is approximately satisfied for this edge. If the edge is stored, we compute
the reduced weight w′(e) = w(e)− (ϕ(u) + ϕ(v)) and add it to both ϕ(u) and ϕ(v). Ghaffari and Wajc [19]
showed that as edges incident on a vertex v re inserted into the stack S, they have weights that exponentially
increase with the factor 1 + ε. Thus, for each vertex at most O(log1+ε W) = O(log W

ε) = O(log n
ε) edges

are stored in S (since we assume W = wmax
wmin

to be poly(n) in this paper), which implies the stack has size
O(n log n

ε). In the post-processing phase, the algorithm unwinds the stack and greedily constructs a maximal

18

Algorithm 3 Semi-Streaming MWM [37, 19]
Input: Stream of edges E, a constant ε > 0
Output: A matching M , using O(n log2 n

ε) bits of space
1: ▷ Initialization
2: ∀v ∈ V : ϕ(v)← 0
3: S ← ∅; M ← ∅

4: ▷ Streaming Phase
5: for e(u, v) ∈ E do
6: if w(e) ≥ (1 + ε)(ϕ(u) + ϕ(v)) then
7: w′(e)← w(e)− (ϕ(u) + ϕ(v))
8: ϕ(u)← ϕ(u) + w′(e); ϕ(v)← ϕ(v) + w′(e)
9: S.push(e)

9: ▷ Post-Processing
10: while S is not empty do
11: e = (u, v)← S.pop()
12: if V (M) ∩ {u, v} = ∅ then
13: M ←M ∪ {e}

matching by processing edges in the stack order, in serial. Through a primal-dual based analysis, Ghaffari
and Wajc [19] show that the resulting matching has an approximation ratio of 1

2+ε (up to appropriately
scaling the ε factor by a constant).

This algorithm was implemented by Ferdous et al. [16] and it was shown to reduce the memory requirements
by one to two factors order of magnitude over offline 1

2 -approximation algorithms, while being close to the best
of them in run time and matching weight. The matching weight was a few percent off the weight obtained
from the offline algorithm that is currently the best for weights, a (2

3 − ε)-approximation algorithm. However,
on one of the largest problems with several billions of edges, the (2

3 − ε)-approximation algorithm did not
terminate even when run on a shared memory parallel computer with 1 TB of memory, while the streaming
algorithm used less than 6 GB of memory on a serial machine.

B.2 Semi-Streaming b-Matching
Recall that given a function b : V → Z+, a b-matching is a set of edges F ⊆ E such that each vertex v ∈ V is
incident on at most b(v) edges in F . At a high level, the semi-streaming MWbM algorithm of Huang and Sellier
[25] works by maintaining a global stack of edges that is then greedily unwound to construct a b-matching. In
particular, for a chosen parameter ε > 0, the size of the stack is bounded by O(|Fmax| · log1+ε(Wε−1)) edges,
where |Fmax| is the maximum size of any b-matching in the graph and W = wmax

wmin
is the ratio of the maximum

and minimum edge weights. Additionally, it can be shown that within the edges of the stack there exists a
1

2+ε -approximate b-matching, which is retrieved by greedily unwinding the stack. Note that for our specific
usage, we have that b(v) = k for all v ∈ V and that W = poly(n), which implies that the algorithm stores
O(nk log n) edges for any constant ε > 0, and hence requires O(nk log2 n) bits of space. The pseudocode of
a slight modification of the original semi-streaming algorithm is given in Algorithm 4, and for the formal
details on proofs of the space complexity and approximation factor we refer to Huang and Sellier [25].

Informally, Algorithm 4 maintains for each vertex v ∈ V and i ∈ [b(v)] a value ϕ(v, i) and a pointer tv(i)
which are initially set to 0 and ∅, respectively, and a stack of edges S. Each vertex v contributes at most
b(v) edges in the final solution, and so we can keep track of the ith chosen edge with the pointer tv(i). The
ϕ(v, i) value can be interpreted as the gain in solution weight for the edge stored in tv(i). For each edge

(P-MWM) max
∑
e∈E

w(e)x(e)

s.t.
∑

e∈δ(v)

x(e) ≤ 1 ∀v ∈ V

x(e) ≥ 0 ∀e ∈ E.

(D-MWM) min
∑
v∈V

y(v)

s.t. y(u) + y(v) ≥ w(e) ∀e = (u, v) ∈ E

y(v) ≥ 0 ∀v ∈ V.

Figure 5: LP Relaxation (P-MWM) of MWM and its dual (D-MWM).

19

Algorithm 4 Semi-Streaming MWbM [25]
Input: A stream of edges E, a function b : V → Z+, and a constant ε > 0
Output: A 1

2+ε -approximate b-matching F
1: ▷ Initialization
2: S ← ∅ ▷ Global stack of edges
3: for v ∈ V do
4: for i ∈ [b(v)] do
5: ϕ(v, i)← 0, tv(i)← ∅

6: ▷ Streaming Phase
7: for e = (u, v) ∈ E do
8: qu ← arg minq∈[b(u)] {ϕ(u, q)}, ϕ(u)← ϕ(u, qu)
9: qv ← arg minq∈[b(v)] {ϕ(v, q)}, ϕ(v)← ϕ(v, qv)

10: if w(e) ≥ (1 + ε/2)(ϕ(u) + ϕ(v)) then
11: w′(e)← w(e)− (ϕ(u) + ϕ(v)) ▷ Gain of e
12: S.push(e)
13: pu(e)← tu(qu), pv(e)← tv(qv)
14: ϕ(u, qu)← ϕ(u) + w′(e), ϕ(v, qv)← ϕ(v) + w′(e)
15: tu(qu)← e, tv(qv)← e ▷ Update pointers

16: ▷ Post-Processing
17: F ← ∅
18: ∀e ∈ S : ae ←true
19: while S ≠ ∅ do
20: e = (u, v)← S.pop()
21: if ae = true then
22: F ← F ∪ {e}
23: for x ∈ {u, v} do
24: c← e
25: while c ̸= ∅ do
26: ac ← false
27: c← px(c)
28: return F

e = (u, v) that streams in, we find the indices and values qu, ϕ(u) := ϕ(u, qu) and qv, ϕ(v) := ϕ(v, qv) that
give the minimum among ϕ(u, i), i ∈ [b(u)], and ϕ(v, j), j ∈ [b(v)], respectively. The edge e is then pushed
to S only if it satisfies w(e) ≥ (1 + ε/2)(ϕ(u) + ϕ(v)). Intuitively, this enforces that the edges incident on
each vertex v ∈ V that get pushed to the stack have exponentially increasing gain in solution weight. If the
edge e satisfies this condition, then it will become the qth

u and qth
v chosen edges of u and v, respectively, so

we update the pointers tu(qu) and tv(qv) to e. We also increase the values of ϕ(u, qu) and ϕ(v, qv) by the
reduced weight of e, which is given by w′(e) = w(e)− (ϕ(u) + ϕ(v)). Additionally, we keep pointers pu(e)
and pv(e) to the qth

u chosen edge of u and the qth
v chosen edge of v that e just replaced.

Once all the edges have streamed and been processed, the b-matching can be retrieved by greedily
unwinding the stack S. Specifically, for each edge in the stack we maintain a boolean flag that is initially
true, and an edge can only be added to the solution if this flag is true. Clearly, the first popped edge must
be added to the solution. For an edge e = (u, v) that is added to the solution, we do pointer chasing on
the pointers pu(e) and pv(e) until they both point to ∅, and for each edge found in the chases, we set their
boolean flag to false. Intuitively, this can be seen as ignoring all the edges that were pushed earlier in the
stack that at some point were the qth

u and qth
v chosen edges of u and v, respectively.

B.3 (∆ + 1)-Edge Coloring
The edge coloring algorithm of Misra and Gries [35] constructs a proper edge coloring C : E → [∆ + 1], i.e., a
coloring such that for any two adjacent edges do not have the same color. In particular, it does so in O(nm)
time using O(m) space. At a high level, the main procedure of the algorithm colors an uncolored edge while
maintaining the invariants that colored edges will never become uncolored (but may change colors) and that
if all colored edges at the start of the procedure form a proper coloring, then the resulting colored edges
will also be proper. By a simple induction, the final coloring must therefore be proper if this procedure
is iteratively applied on uncolored edges. The pseudocode of the algorithm is given in Algorithm 5. For
technical details on the proof that it constructs a proper (∆ + 1)-edge coloring, we refer to the original paper
of Misra and Gries [35].

For a vertex v ∈ V , we say that a color c ∈ [∆ + 1] is free on v if there exists no edge e′ incident on v
such that C(e′) = c. The main loop of Algorithm 5 for coloring an uncolored edge e = (u, v) works as follows.
As a heuristic, we can first check if there exists some color ℓ ∈ [∆ + 1] that is free on both u and v, and if so
set C(e) = ℓ and continue to the next edge. Otherwise, we construct a data structure F called a maximal fan.
The fan F is a maximal ordered list of neighbors of u such that F [1] = v and for 2 ≤ i ≤ l = |F |, the color
C(u, F [i]) ̸=⊥ and is free on F [i− 1]. Once F is constructed, we denote by z the last vertex in F . We then

20

Algorithm 5 (∆ + 1)−Edge Coloring [35]
Input: A graph G = (V, E)
Output: A proper edge coloring C : E → [∆ + 1]

1: ∆← maxv∈V deg v
2: ∀e ∈ E : C(e)←⊥ ▷ Each edge starts uncolored
3: for e = (u, v) ∈ E do
4: if C(e) =⊥ then
5: ▷ Common Color Heuristic
6: ℓ← color in [∆ + 1] ∪ {⊥} that is free on u and v
7: if ℓ ̸=⊥ then
8: C(e)← ℓ
9: continue

10:
11: F ←MaximalFan(u, v), z ← F.back()
12: c← a color in [∆ + 1] that is free on u
13: d← a color in [∆ + 1] that is free on z
14: if d is not free on u then
15: CDPath(u, c, d)
16: F ← ShrinkFan(F , d), z ← F.back()
17: RotateFan(F), e′ ← (u, z)
18: C(e′)← d
19: return C

20: procedure MaximalFan(u, v)
21: F ← ⟨v⟩ ▷ Array
22: T ← {x ∈ N(u) : C(u, x) ̸=⊥}
23: while ∃x ∈ T such that C(u, x) is free on F .back() do
24: F.push(x)
25: T ← T \ {x}
26: return F

27: procedure CDPath(u, c, d)
28: x← u, z ← ∅
29: q ← d
30: while q is not free on x do
31: y ← vertex in N(x) \ z such that

C(x, y) = q
32: p← c if q = d else d
33: C(x, y)← p
34: z ← x, x← y, q ← p

35: procedure ShrinkFan(F , d)
36: l← |F |
37: for i ∈ [l] do
38: if d is free on F [i] then
39: F ← ⟨F [1], . . . , F [i]⟩
40: break
41: return F

42: procedure RotateFan(F)
43: l← |F |
44: for i ∈ [l − 1] do
45: x← F [i], e1 ← (u, x)
46: y ← F [i + 1], e2 ← (u, y)
47: C(e1)← C(e2)
48: z ← F [l], e3 ← (u, z)
49: C(e3)←⊥

find a color c ∈ [∆ + 1] that is free on u and a color d ∈ [∆ + 1] that is free on z. Since deg(u), deg(z) ≤ ∆,
such colors must always exist.

If d is free on u, then we perform a rotation of the fan F , which involves circularly shifting the colors of
the corresponding edges of the fan by one to the left, i.e., setting C(u, F [i]) = C(u, F [i + 1]) for 1 ≤ i ≤ l − 1
and setting C(u, z) =⊥. Since we have that d is free on both u and z, we can safely set C(u, z) = d and finish.
Otherwise, if d is not free on u, we first find a structure called a cdu path, which is simply a maximal path of
edges starting at u such that the colors of edges on the path alternate between c and d. Note that since c is
free on u, this implies that the first edge (u, x) on such a path must have color d and additionally that x
must be in the fan before z (as otherwise we could have increased the size of the fan by adding x after z).
Once such a path is found, we simply invert the colors of the edges on the path, i.e., set all edges with color c
to d and vice versa. This operation now ensures that d is free on u, but does not guarantee that d remains
free on z. To fix this, we can shrink the fan F up to the first vertex in F such that d is free on it and update
z accordingly. We can safely do a rotation of the shrunken fan and set C(u, z) = d.

C Additional Experimental Details
C.1 Dataset Description
Tables 3 and 4 include sizes and degree measures for the 95 graphs that we have reported results on.

21

Graph n m Avg. Deg. Max. Deg. Min. Deg.
mycielskian20 (U) 786.43 K 1.36 B 3446.42 393,215 19
com-Friendster (U) 65.61 M 1.81 B 55.06 5,214 1
GAP-kron (W) 134.22 M 2.11 B 31.47 1,572,838 0
GAP-urand (W) 134.22 M 2.15 B 32 68 6
MOLIERE_2016 (W) 30.24 M 3.34 B 220.81 2,106,904 0
Agatha_2015 (U) 183.96 M 5.79 B 62.99 12,642,631 1

(a) Large graph instances. U: Unweighted, W: Weighted Graph. K: Thousand, M: Million, B: Billion.

Graph n m Avg. Deg. Max. Deg. Min. Deg.
astro-ph 16,706 121,251 14.52 360 0
Reuters911 13,332 148,038 22.21 2,265 0
cond-mat-2005 40,421 175,691 8.69 278 0
gas_sensor 66,917 818,224 24.45 32 7
turon_m 189,924 778,531 8.20 10 1
Fault_639 638,802 13,303,571 41.65 266 0
mouse_ gene 45,101 14,461,095 641.27 8,031 0
bone010 986,703 23,432,540 47.50 62 11
dielFil.V3real 1,102,824 44,101,598 79.98 269 8
kron.logn21 2,097,152 91,040,932 86.82 213,904 0

(b) Small graph instances. All the graphs are weighted.

Graph n m Avg. Max. Min. Max. Min. #Trcs
Deg. Deg. Deg. Dem. Dem. (M)

FB_ClusterA_rack 13,733 496,624 72.33 7,272 1 142,053 1 316
FB_ClusterB_rack 18,897 1,777,559 188.13 11,932 1 315,718 1 2,710
FB_ClusterC_rack 27,358 2,326,086 170.05 25,224 1 169,202 1 302
FB_ClusterA_ip 357,059 43,057,511 241.18 57,676 1 18,614 1 316
FB_ClusterB_ip 4,963,141 164,277,914 66.20 376,508 1 17,036 1 2,710
FB_ClusterC_ip 990,023 40,654,711 82.13 104,821 1 18,571 1 316
HPC1 1,024 3,797 7.42 21 0 1,060 530 3
HPC2 1,024 15,095 29.48 36 0 2,071 3 22
HPC3 1,024 37,908 74.04 1,022 0 48 2 1
HPC4 1,024 10,603 20.71 26 0 1,690 1690 18
pFabric_0.1 144 10,296 143.00 143 143 41,832 1 30
pFabric_0.5 144 10,296 143.00 143 143 43,897 14 30
pFabric_0.8 144 10,296 143.00 143 143 39,208 14 30

(c) Trace instances. The edge weights are the number of occurrences of a pair of vertices in the trace data. Self loops
are discarded. Max. Dem. and Min. Dem. are the maximum and minimum weights on the edges representing the
demands, while #Trcs list the number of traces in millions.

Table 3: Graph statistics for Large, Small and Trace instances.

C.2 Other Experimental Results
Figure 6 shows the summary results for the Rmat graphs and Figure 7 shows the relative weight and relative
memory results for the Stk-dp algorithm on the Large dataset when using varying values of ε. The summary
of experimental results for HPC and pFabric datacenter network Trace graphs are shown in Figures 8 and 9,
respectively.

22

rmatb rmatg rmater

log n m Avg. Deg. ∆ m Avg Deg. ∆ m Avg Deg. ∆

10 7,939 15.51 372 7,960 15.55 85 8,185 15.99 28
11 16,025 15.65 615 16,030 15.65 120 16,377 15.99 31
12 32,302 15.77 864 32,282 15.76 171 32,761 15.99 34
13 64,917 15.85 1,280 64,884 15.84 160 65,531 15.99 35
14 130,214 15.90 1,700 130,169 15.90 199 131,067 15.99 35
15 260,905 15.92 2,502 260,886 15.92 261 262,133 15.99 35
16 522,434 15.94 3,471 522,451 15.94 276 524,273 15.99 34
17 1,046,118 15.96 5,085 1,045,962 15.96 416 1,048,561 15.99 36
18 2,093,484 15.97 7,029 2,093,526 15.97 465 2,097,142 15.99 41
19 4,189,181 15.98 10,222 4,189,155 15.98 606 4,194,296 15.99 38
20 8,381,379 15.99 14,374 8,381,431 15.99 644 8,388,594 15.99 37

Table 4: Number of edges m, average and maximum degrees (∆) for the R-MAT graphs generated for each
scale x ∈ [10..20] and initiator matrix.

G
rd

y-
It

k-
E
C

N
C

St
k-

dp St
k

St
kb

-c
c-

m

0.85

0.90

0.95

1.00

R
el

at
iv

e
W

ei
gh

t

(a)

21 22 23 24 25

k

20

21

22

23

24

G
eo

.
M

ea
n

of
R

el
.

T
im

e

(b)

21 22 23 24 25

k

20

21

22

23

24

25

G
eo

.
M

ea
n

of
R

el
.

M
em

.

(c)

GPA-It Grdy-It k-EC NC Stk-dp Stk Stkb-cc-m

Figure 6: Summary plots for the streaming and offline algorithms on Rmat graphs. (a) Boxplot of relative
weights across all instances and k values for each algorithm. We set ε = 0.001 for Stk, Stk-dp and
Stkb-cc-m. (b) Geometric mean of relative time and (c) geometric mean of relative memory, across all
instances with increasing k values. GPA-It is the baseline for relative weight, and Stk is the baseline
algorithm for relative time and memory. Note the logarithmic scales in the axes of the last two subplots.

0.4

0.6

0.8

1.0
Mycielskian20

Rel. Wt.
Rel. Mem.

com-Friendster

Rel. Wt.
Rel. Mem.

GAP-kron

Rel. Wt.
Rel. Mem.

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0
GAP-urand

Rel. Wt.
Rel. Mem.

0.0 0.2 0.4 0.6 0.8 1.0

Moliere_2016

Rel. Wt.
Rel. Mem.

0.0 0.2 0.4 0.6 0.8 1.0

Agatha_2015

Rel. Wt.
Rel. Mem.

epsilon

Re
l.

Qu
an

tit
y

Figure 7: Relative weights and memory of the Large graphs with varying ε using Stk-dp, with k = 8. The
quantities are relative to ε = 0 values, and we test with ε ∈ {0, 2−x}, where x ∈ {16, 14, 12, 10, 8, 6, 4, 2, 1, 0}.

23

G
rd

y-
It

k-
E
C

N
C

St
k-

dp St
k

St
kb

-c
c-

m

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e
W

ei
gh

t

(a)

21 22 23 24 25 26

k

20

21

22

23

G
eo

.
M

ea
n

of
R

el
.

T
im

e

(b)

21 22 23 24 25 26

k

20

21

22

23

24

G
eo

.
M

ea
n

of
R

el
.

M
em

.

(c)

GPA-It Grdy-It k-EC NC Stk-dp Stk Stkb-cc-m

Figure 8: Summary plots the streaming and offline algorithms on HPC Trace dataset. (a) Boxplot of relative
weights across all instances and k values for each algorithm, (b) Geometric mean of relative time, and (c)
geometric mean of relative memory across all instances with increasing k values. We set ε = 0.001 for Stk,
Stk-dp and Stkb-cc-m. GPA-It is the baseline for relative weight, and Stk is the baseline algorithm for
relative time and memory. Note the logarithmic scales in the axes of the last two subplots.

G
rd

y-
It

k-
E
C

N
C

St
k-

dp St
k

St
kb

-c
c-

m

0.80

0.85

0.90

0.95

1.00

R
el

at
iv

e
W

ei
gh

t

(a)

21 22 23 24 25 26

k

20

21

22

23

24

G
eo

.
M

ea
n

of
R

el
.

T
im

e

(b)

21 22 23 24 25 26

k

20

21

22

23

24

G
eo

.
M

ea
n

of
R

el
.

M
em

.

(c)

GPA-It Grdy-It k-EC NC Stk-dp Stk Stkb-cc-m

Figure 9: Summary plots the streaming and offline algorithms on pFabric Trace dataset. (a) Boxplot of
relative weights across all instances and k values for each algorithm, (b) Geometric mean of relative time,
and (c) geometric mean of relative memory across all instances with increasing k values. We set ε = 0.001 for
Stk, Stk-dp and Stkb-cc-m. GPA-It is the baseline for relative weight, and Stk is the baseline algorithm
for relative time and memory. Note the logarithmic scales in the axes of the last two subplots.

24

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 A Primal-Dual Approach
	4.1 Analysis of the Algorithm
	4.1.1 Dual Feasibility
	4.1.2 Approximation Ratio
	4.1.3 Time and Space Complexity

	5 A b-Matching Based Approach
	6 Heuristic Improvements
	7 Experiments and Results
	7.1 Datasets and Benchmark Algorithms
	7.2 Comparison of Streaming Algorithms
	7.3 Comparison with Offline Algorithms
	7.4 Large Graph Results
	7.5 Trace Graph Results

	8 Conclusions and Future Work
	A Applications and Offline Algorithms
	B Related Algorithms
	B.1 Semi-Streaming Matching
	B.2 Semi-Streaming b-Matching
	B.3 (Delta+1)-Edge Coloring

	C Additional Experimental Details
	C.1 Dataset Description
	C.2 Other Experimental Results

